91是合数。合数指的是大于1的正整数,可以被除了1和自身以外的数整除的数。而91可以被7和13整除,因此它是合数。质数指的是只能被1和自身整除的正整数。如果一个数能被其他数整除,那么它就不是质数。要判断一个数是不是质数,可以使用试除法。试除法是指从2开始,依次除以2以上的正整数,如果能整除则不是质数。而在91的情况中,7和13是两个能整除91的数,所以它不是质数而是合数。
质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。
具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn。如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
方法一:儿歌记忆法(一)
(二、三、五、七和十一)(十三后面是十七)(十九、二三、二十九)(三一、三七、四十一)(四三、四七、五十三)(五九、六一、六十七)(七一、七三、七十九)(八三、八九、九十七)
方法二:儿歌记忆法(二)
(二、三、五、七和十一)(十三后面是十七)(还有十九别忘记)(二三,二九,三十一)(三七,四一,四十三)(四七,五三,五十九)(六一,六七,七十一)(七三,七九)(八三,八九)(九十七)
方法三:口诀记忆法
二,三,五,七,一十一;一三,一九,一十七;二三,二九,三十七;三一,四一,四十七;四三,五三,五十九;六一,七一,六十七;七三,八三,八十九;再加七九,九十七;
25个质数不能少;百内质数心中记。
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)