f=mv是动量定理公式。F=mv,其中F表示力,m表示质量,v表示速度。即可以用力乘以物体的质量来表示物体的运动速度。力乘以物体的质量是物体的动能,物体的动能除以物体的质量便是物体的速度。
(1)在牛顿力学适用的条件下才可适用动量定理,即动量定理仅适用于宏观低速的研究对象。对于微观粒子和以光速运动的物体,动量定理不再适用;
(2)只适用于惯性参考系,若对于非惯性参考系,必须加上惯性力的冲量。且v1,v2必须相对于同一惯性系。
(1)动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时,F是合外力对作用时间的平均值。p为物体初动量,p′为物体末动量,t为合外力的作用时间。
(2)FΔt=mΔv是矢量式。在应用动量定理时,应该遵循矢量运算的平行四边形法则,也可以采用正交分解法,把矢量运算转化为标量运算。假设用Fx(或Fy)表示合外力在x(或y)轴上的分量。(或)和vx(或vy)表示物体的初速度和末速度在x(或y)轴上的分量,则
Ix=mvx-mvx₀
Iy=mvy-mvy₀
上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一坐标轴上的分量。在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对于未知量,一般先假设为正方向,若计算结果为正值。说明实际方向与坐标轴正方向一致,若计算结果为负值,说明实际方向与坐标轴正方向相反。